
International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 769
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A Review on Various Scheduling Algorithms
Saraswathi Seemakuthi1, Venkat Alekhya.Siriki2 , Dr. E.Laxmi Lydia3

1B.TECH: III, Department of Computer Science and Engineering, Vignan's Institute Of Information Technology, Visakhapatnam,
saraswathi.seemakurthi@gmail.com, Andhra Pradesh, India.

2B.TECH: III, Department of Computer Science and Engineering, Vignan's Institute Of Information Technology, Visakhapatnam,
alekhya.sv96@gmail.com, Andhra Pradesh, India.

3Associate Professor, Department of Computer Science and Engineering, Vignan's Institute Of Information Technology,
Visakhapatnam, elaxmi2002@yahoo.com, Andhra Pradesh, India.

Abstract- This research paper describes about scheduling, scheduler, classification of scheduling, main purpose of scheduling and various scheduling
algorithms such as first come first serve scheduling algorithm, shortest-job-first scheduling algorithm, priority scheduling algorithm, round robin

scheduling algorithm, multilevel-queue scheduling algorithm, multilevel feedback queue scheduling algorithms. This research paper describes how these
algorithms are implemented, with the parameters such as average waiting time and average turnaround time, Gantt chart and how average waiting time

and average turnaround time are calculated, merits and demerits of the scheduling algorithms.

Keywords: scheduling, scheduler, turnaround time, Gantt chart

—————————— ——————————
1. INTRODUCTION

Why scheduling algorithms are used? When a process is
waiting for an I/O request or some other requests that is
needed for its execution, the CPU will be sitting idle. To
maximize the CPU utilization time the CPU is allocated
to another process which is waiting in the ready queue.
This can be achieved by scheduling. [1] Scheduling is the
method by which work specified by some means is
assigned to resources that complete the
work. Scheduling can be categorized into two types they
are preemptive scheduling and non preemptive
scheduling. [2] The preemptive ling scheduling is
prioritized. The highest priority process should always
be the process that is currently utilized. In non-
preemptive scheduling, a running task is executed till
completion. It cannot be interrupted. [1]A scheduler is
what carries out the scheduling activity. Schedulers are
often implemented so they keep all compute resources
busy allow multiple users to share system resources
effectively, or to achieve a target quality of service. The
main purposes of scheduling algorithms are to
minimize resource starvation and to ensure fairness
amongst the parties utilizing the resources. Scheduling
deals with the problem of deciding which of the
outstanding requests is to be allocated resources. There
are many different scheduling algorithms.

1.1 FIRST – COME, FIRST -SERVED
SCHEDULING ALGORITHM

FCFS is a scheduling algorithm which is based on non
preemptive scheduling. This is the simplest algorithm as
the name indicates the process that request for the CPU
first is allocated the CPU first. It is implemented by FIFO
queue. [3] When the process enters the ready queue, it’s
PCB (Process Control Block) is linked onto the tail of the
queue. When CPU is free, it is allocated to the process at
the head of the queue. The running process is removed
from the queue. Figure1 demonstrates the FCFS
scheduling algorithm.

Figure 1 FCFS scheduling algorithm.

A.IMPLEMENTATION OF FCFS

Table1 shows the some processes that arrive at time 0
milliseconds.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 770
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Process Burst
Time

P1 20

P2 30

P3 6

P4 2

Table 1

If these processes arrive in order of P1, P2, P3, and P4 and
served in FCFS order, Figure 2 shows the results of
Gantt chart:

P1 P2 P3 P4

 0 20 50 56 58

Figure 2 Gantt chart

The waiting time is 0 milliseconds for ‘P1’ 20
milliseconds for ‘P2’, 50 milliseconds for ‘P3’ and 56
milliseconds for ‘P4 ’

Average waiting time:

(20+50+56) /3=84 milliseconds.

If the process arrives in order P4, P3, P1,P2 the results are
shown in the figure3.

P4 P3 P1 P2

 0 2 8 28 58

Figure 3 Gantt chart

Average waiting time:

38 / 3=12.666 milliseconds.

The average waiting time under FCFS policy is generally
not minimal and may vary substantially if the processes
CPU burst time varies greatly .There is a common effect
as all other processors wait for the one big process to get
off the CPU. This effect results in lower CPU and device
utilization than might be possible if the shortest process
were allowed to go first. The FCFS scheduling is non-
preemptive i.e. once the CPU has been allocated to a
process, that process keeps the CPU until it releases the
CPU, either by terminating the process or by requesting
I/O.

B.ADVANTAGES OF FCFS:

• [1] The lack of prioritization means that as long
as every process eventually completes, there is
no starvation. In an environment where some
processes might not complete, there can be
starvation.

• It is based on Queuing
• FIFO scheduling is simple to implement. It is

also intuitively fair.
• [15]Provably optimal with respect to minimizing

the average waiting time.
• [15]I/O bound jobs get priority over CPU bound

jobs.

C.DISADVANTAGES OF FCFS:

• [1]Since context switches only occur upon
process termination, and no reorganization of
the process queue is required, scheduling
overhead is minimal.

• Throughput can be low, since long processes can
hold the CPU

• Turnaround time, waiting time and response
time can be high for the same reasons above

• No prioritization occurs, thus this system has
trouble meeting process deadlines.

• [3]It is particularly troublesome for time sharing
systems, where it is important that each user get
a share of regular intervals.

• It would be disastrous to allow one process to
keep the CPU for an extended period.

1.2 SHORTEST-JOB-FIRST SHEDULING

[4]Shortest-Job-First (SJF) is a non-preemptive discipline
in which waiting job (or process) with the smallest
estimated run-time-to-completion is run next. In other
words, when CPU is available, it is assigned to the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 771
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

process that has smallest next CPU burst. This algorithm
associates with each process the length of processes next
CPU burst .When the CPU is available, it is assigned to
the process that has the smallest next CPU burst. When
the next CPU bursts are same, then the tie is beaked
using FCFS algorithm. The more appropriate term for
this scheduling method would be Shortest-Next-CPU-
Burst algorithm, because scheduling depends on the
length of the next CPU burst of a process, rather than its
total length. Figure 4 demonstrating the shortest job first
algorithm.

Figure 4 shortest job first

As an example of SJF scheduling, consider the following
set of process, with the length of the CPU burst given in
milliseconds. Table 2 demonstrates the implementation
in SJF scheduling.

Process Burst time

P1 6

P2 8

P3 7

P4 3

 Table 2

 Using SJF scheduling, figure 5 shows the results of
Gantt chart

P4 P1 P3 P2

 0 3 9 16 24

Figure 5 Gantt chart

The waiting time is 3 milliseconds for ‘P1’, 9
milliseconds for ‘P3’,16 milliseconds for ‘ P2’ and 0

milliseconds for ‘P4’.Average waiting time is 9.333
milliseconds. If the CPU is given to the processes in
FCFS order, Figure 6 shows the results of Gantt chart:

P1 P2 P3 P4

 0 6 14 21 24

Figure 6 Gantt chart

The waiting time for ‘P1’ is 0 milliseconds, ‘P2’ is 6
milliseconds, and ‘P3’ is 14 milliseconds and ‘P4’is 21
milliseconds .Average waiting time is 13.666
milliseconds. From this we can say that SJF decreases the
waiting time hence it is provably optimal. Although the
SJF algorithm is optimal, it cannot be implemented at the
level of short term CPU scheduling .There is no way to
know the length of the next CPU burst. One approach is
to try to approximate SJF scheduling .In this approach
we can predict the next CPU burst. We expect the next
CPU burst will be similar in length to previous one. The
next CPU burst is generally predicted as an exponential
average of the measured lengths of previous ones. Let tn
be the lengths of nth CPU burst, Tn+1 be the predicted
value for the next CPU burst. Then, for α, 0≤α≤1 define

 Tn+1=α tn + (1-α) Tn.

This formula defines on exponential average Tn stores
the past history. The parameter α controls the relative
weight of recent and past history in our prediction. If α
=0,then Tn+1=Tn recent history has no effect .If α=1,then
Tn+1=Tn ,and only the most recent CPU burst matters.
More commonly α=1/2 so recent history and past history
are equally weighted.

CPU burst (ti) 6 4 6 4 13 13 13 ………

Guess (ti) 10 8 6 6 5 9 11 12 ………….

Figure 7 shows the results of Gantt chart

P1 P2 P4 P1 P3

0 1 5 10 17 26

Figure 7 Gantt chart

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 772
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Graph 1 demonstrates the implementation of SJF
scheduling algorithm

Graph 1

The SJF algorithm can be either preemptive or non-
preemptive. The choice arises when a new process
arrives at ready queue while a previous process is still
executing .The next CPU burst of the newly arrived
process may shorter than what is left of currently
executing process ,where as a non preemptive SJF
algorithm will allow the currently running process to
finish its CPU burst. Preemptive SJF scheduling is
sometimes called shortest – remaining – time –first
scheduling.

As an example consider the following four processes,
Table 3 demonstrates the implementation in SJF
scheduling

Process Arrival
time

Burst time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Table 3

Process P1 is started at time 0, since it is the only process
in the queue. Process P2 arrives at time .The remaining
time for process P1 (7 milliseconds) is larger than the
time required by process P2 (4 milliseconds) so process
P1 is preempted and process P2 is scheduled.

The average waiting time is:

 ((10-1) (1-1)(17-2)(5-3)) /4=26/4=6.5 milliseconds.

A.ADVANTAGES OF SJF:

This scheduling is optimal in that it always produces the
lowest mean response time. Processes with short CPU
bursts are given priority and hence run quickly (are
scheduled frequently).

• [4]The SJF scheduling is especially appropriate
for batch jobs for which the run times are known
in advance.

• Since the SJF scheduling algorithm gives the
minimum average time for a given set of
processes, it is probably optimal.

• The SJF algorithm favors short jobs (or
processors) at the expense of longer ones.

• The best SJF algorithm can do is to rely on user
estimates of run times.

• This algorithm is designed for maximum
throughput in most scenarios

B.DISADVANTAGES OF SJF:

• [1] If a shorter process arrives during another
process' execution, the currently running
process may be interrupted (known as
preemption), dividing that process into two
separate computing blocks. This creates excess
overhead through additional context switching.

• The scheduler must also place each incoming
process into a specific place in the queue,
creating additional overhead.

• It is not useful in timesharing environment in
which reasonable response time must be
guaranteed.

• If CPU is allocated in SJF non preemptive then
there will be starvation of length of larger CPU
burst process.

1.3 PRIORITY SHEDULING ALGORITHM

[3] In this algorithm a priority is associated with each
process, and the CPU is allocated to the process with the
highest priority. Equal priority processes are scheduled
in FCFS order. Priorities are indicated by some fixed
range of numbers, such as 0-7 or 0-4095.However, there
is no general agreement on whether 0 is the highest or
lowest priority. Some systems use lowest priority
numbers to represent highest priority and some use
highest numbers to represent highest priority. Priorities
are defined either internally or externally. Internally
defined priorities use some measurable quantity or
quantities to compute the priority of the process. For

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 773
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

example, time-limits, memory requirements, the number
of open files. External priorities are set by criteria
outside the operating system, such as the importance of
process, the type and amount of funds being paid for
computer use, the department sponsoring the work and
other, often political, factor. Priority scheduling can be
either preemptive or non preemptive .A preemptive
priority scheduling algorithm will preempt the CPU if
the priority of currently running process is lower than
priority of newly arrived process. A non preemptive
priority scheduling algorithm will simply put the new
process at the head of ready queue. Figure 8
demonstrates the implementation in priority scheduling

Figure 8 priority scheduling algorithm

 As an example consider the following four processes.
Table 4 demonstrates the implementation in priority
scheduling

Process Burst
time

Priority

P1

10

3

P2

1

1

P3

2

4

P4 1 5

Table 4

 Figure 9 shows the results of Gantt chart

P2 P1 P3 P4

 0 1 11 13 15

Figure 9 Gantt chart

The average waiting time is 6.25 milliseconds

A.ADVANTAGES:

• [6] Priority scheduling provides a good
mechanism where the relative importance of
each process may be precisely defined.

• [5] Simplicity: suitable for applications with
varying time and resource requirements.

• Reasonable support for priority.

B.DISADVANTAGE:

• A major problem with priority scheduling
algorithm is indefinite blocking, starvation

• A process that is ready to run but waiting for the
CPU can be considered blocked .A priority
scheduling algorithm can leave some low
priority processes waiting indefinitely. Solution
to this problem is Aging .Aging is a technique of
gradually increasing the priority of processes
that wait in the system for long time.

• If the system eventually crashes then all
unfinished low priority processes gets lost.

1.4 ROUND ROBIN SCHEDULING ALGORITHM:

[3]It is designed especially for time sharing systems. It is
similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time called a
time quantum or time slice is defined. A time slice is
generally from 1 to 100 milliseconds. The ready queue is
treated as circular queue. The CPU scheduler goes
around the ready queue, allocating to each process for a
time interval of up to 1 quantum. To implement RR
scheduling, we keep the ready queue as FIFO queue of
processes. New processes are added to tail of queue. The
process may have CPU burst less than time quant; in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 774
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

this case the process itself will release CPU voluntarily.
If CPU burst of currently running process is longer than
time quantum, the timer will go off and will cause an
interrupt to the operating system. A context switch will
be executed and the process will be put at the tail of
ready queue. The CPU scheduler will then select next
process in ready queue. Consider the following example
which illustrates Round Robin algorithm. Figure 10
demonstrating round robin scheduling algorithm.

Figure 10 round robin scheduling algorithm

Table 5 demonstrates the implementation in Round
robin scheduling

Process Burst time

P1 24

P2 3

P3 3

 Table 5

Figure 11 shows the results of Gantt chart

P1

P2

P3

P1

P1

P1

P1

P1

 0 4 7 10 14 18 22 26 30

Figure 11 Gantt chart

Let us consider time quant of 3 milliseconds. Then
average waiting time is 17/3 is 5.66 milliseconds. The
performance of RR algorithm depends heavily on the
size of time quantum. If it is extremely large then the
policy is same as time quantum. If it is extremely small,
the RR approach is called process sharing and creates
the appearance that each of n process has its own
processor.

A. Advantages:

• [6] Round robin scheduling is fair in that every
process gets an equal share of the CPU.

• It is easy to implement and, if we know the
number of processes on the run queue, we can
know the worst-case response time for a
process.

• [1] Good average response time, waiting time is
dependent on number of processes, and not
average process length

• Because of high waiting times, deadlines are
rarely met in a pure RR system.

• Starvation can never occur, since no priority is
given. Order of time unit allocation is based
upon process arrival time, similar to FCFS.

• Round Robin is excellent for parallel computing
is because round-robin is great for load
balancing if the tasks are around the same
lengths.

B.DISADVANTAGES:

• [6]RR scheduling involves extensive
overhead, especially with a small time unit.

• Balanced throughput between FCFS and
SJF, shorter jobs are completed faster than in
FCFS and longer processes are completed
faster than in SJF

• [1] Giving every process an equal share of
the CPU is not always a good idea. For
instance, highly interactive processes will
get scheduled no more frequently than
CPU-bound processes.

• [8]Low throughput: If round robin is
executed in circular way then more context
switches occur so throughput will be low

• Context switch leads to the wastage of time,
memory and leads to scheduler overhead.

• Round robin made larger response time
which is the drawback because system
performance will be degraded.

1.5 MULTILEVEL QUEUE SCHEDULING:

In this scheduling each process are easily classified into
different groups. For example, a common division is
made between foreground (interactive) process and
background (batch) processes. These two types of
processes have different response-time requirements
and so may have different scheduling needs. In addition,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 775
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

foreground processes may have priority (externally
defined) over background processes. A multilevel queue
scheduling algorithm partitions the ready queue into
several queues .The processes are permanently assigned
to one queue, generally based on some property of the
process, such as memory size, process priority, or
process type.

Let us consider an example of a multilevel queue
scheduling algorithm with five queues, listed below in
order of priority:

• System Processes
• Interactive Processes
• Interactive editing Processes
• Batch Processes
• Student Processes

Figure 12 demonstrating the multilevel queue
scheduling algorithm.

Figure 12 multilevel queue scheduling algorithm

Each queue has absolute priority over low priority
queues. No process in the student queue could run
unless the queues for system processes, interactive
processes, interactive editing processes and batch
processes were all empty. If system process entered the
ready queue while a batch process was running, the
batch process would be preempted. Another possibility
is to time slice among the queues. Each queue gets a
certain portion of the CPU time.

A.ADVANTAGES:

• [9]Since processes do not move between queues
so, this policy has the advantage of low
scheduling overhead

• [10]It covers all the disadvantages of all other
scheduling algorithms such as overhead during
context switching, low throughput…

• Enables short CPU-bound jobs to be prioritized
and therefore processed quickly

• [12]Can be preemptive or non-preemptive
• [14]Flexible implementation with respect to

movement between queues.

B.DISADVANTAGES:

• [9]This scheduling algorithm is inflexible
• [10]It is difficult to understand to implement

1.6MULTILEVEL FEEDBACK-QUEUE SCHEDULING:

[3]This algorithm allows the process to move between
the queues instead of assigning the process permanently
to a certain queue. This algorithm separate processes
according to the characteristics of their CPU bursts. If a
process uses too much CPU time, it will be moved to a
low-priority queue. A process that waits too long in
lower –priority queue may be moved to a higher –
priority queue. This form of aging prevents starvation.

• A multilevel feedback-queue scheduler is
defined by following parameters:

• The number of queues
• The scheduling algorithm for each queue
• The method used to determine when to upgrade

a process to a higher priority queue
• The method used to determine when to demote

a process to a lower-priority queue
• The method used to determine which queue a

process will enter when that process needs
service

The definition of a multilevel feedback-queue
scheduler makes it the most general CPU-
scheduling algorithm. It can be configured to
match a specific system under design.Figure13
demonstrating the multilevel feedback-queue
scheduling algorithm.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 776
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Figure 13 multilevel feedback-queue scheduling
algorithm

A.ADVANTAGES:

• [11]This scheme will continue until the process
completes or it reaches the base level queue.

• A process that waits too long in a lower priority
queue may be moved to a higher priority queue.

• To exploit this behavior, the scheduler can favor
jobs that have used the least amount of CPU
time, thus approximating SJF.

• This policy is adaptive because it relies on past

behavior and changes in behavior result in
changes to scheduling decisions.

• [13]A process that waits too long in a lower
priority queue may be moved to a higher
priority queue.

B.DISADVANTAGES:

• [3]This algorithm is most complex algorithm
because defining the best scheduler requires
some means by which to select values for all
parameters.

• [11]If the process is completed within the time
quantum of the given queue, it leaves the
system.

• [12]Moving the process around queue produce
more CPU overhead.

• If job's time slices expires, drop its priority one
level.

• [13]Moving the process around queue produce
more CPU overhead.

 2. CONCLUSION:
 When designing an operating system, a
programmer must consider which scheduling algorithm
will perform best for the use the system is going to see.
There is no universal “best” scheduling algorithm, and
many operating systems use extended or combinations
of the scheduling algorithms above. First come first
serve scheduling algorithm is simple to understand and
suitable only for batch system where waiting time is
large. The shortest job first scheduling algorithm deals
with different approach. In this algorithm, the major
benefit is that it gives the minimum average waiting
time. The priority scheduling algorithm is based on the
priority in which the highest priority job can run first
and the lowest priority job need to wait though it will
create a problem of starvation. The round robin
scheduling algorithm is preemptive which is based on
FCFS policy and time quantum. This algorithm is
suitable for the time sharing systems. In multilevel
queue scheduling, processes are permanently assigned
to a queue depending upon its nature and no process in
the lower priority queue could run unless the higher
priority queues were empty. Also, it is pre-emptive in
nature. Multilevel feedback queue scheduling is also
pre-emptive in nature and it allows the processes to
move between the queues depending upon the given
time quantum.

3. REFERENCES:

[1]https://en.wikipedia.org/wiki/Scheduling_(computing
)

[2]http://www.careerride.com/OS-preemptive-
scheduling.aspx

[3]Operating system principles: Abraham Silberschatz,
Peter Baer Galvin, Greg Gagne

[4]http://www.personal.kent.edu/~rmuhamma/OpSyste
ms/Myos/sjfSchedule.htm

[5]http://www.answers.com/Q/Advantage_and_disadva
ntage_of_priority_scheduling

[6]www.cs.rutgers.edu/~pxk/416/notes/07-
scheduling.html

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
http://www.careerride.com/OS-preemptive-scheduling.aspx
http://www.careerride.com/OS-preemptive-scheduling.aspx
http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/sjfSchedule.htm
http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/sjfSchedule.htm
http://www.answers.com/Q/Advantage_and_disadvantage_of_priority_scheduling
http://www.answers.com/Q/Advantage_and_disadvantage_of_priority_scheduling
http://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html
http://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 777
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[7]www.researchgate.net/post/What_would_be_the_adv
antages_and_disadvantages_of_using_Dynamic_Time_s
licing_concept_for_scheduling

[8]http://shodhganga.inflibnet.ac.in:8080/jspui/bitstream/
10603/50607/8/chap4descriptn.pdf

[9]http://www.personal.kent.edu/~rmuhamma/OpSyste
ms/Myos/multQueue.htm

[10]http://www.answers.com/Q/What_is_the_advantage
_and_disadvantage_of_multilevel_queue_scheduling

[11]https://en.wikipedia.org/wiki/Multilevel_feedback_q
ueue.

[12]https://prezi.com/kzs2ycuj-c65/multilevel-queue-
scheduling/

[13]www.sciencehq.com/computing-
technology/1353.html

[14]https://prezi.com/kzs2ycuj-c65/multilevel-queue-
scheduling/

[15]ijcsmc.com/docs/papers/November2013/V2I11201368
.pdf

 IJSER

http://www.ijser.org/
http://www.researchgate.net/post/What_would_be_the_advantages_and_disadvantages_of_using_Dynamic_Time_slicing_concept_for_scheduling
http://www.researchgate.net/post/What_would_be_the_advantages_and_disadvantages_of_using_Dynamic_Time_slicing_concept_for_scheduling
http://www.researchgate.net/post/What_would_be_the_advantages_and_disadvantages_of_using_Dynamic_Time_slicing_concept_for_scheduling
http://shodhganga.inflibnet.ac.in:8080/jspui/bitstream/10603/50607/8/chap4descriptn.pdf
http://shodhganga.inflibnet.ac.in:8080/jspui/bitstream/10603/50607/8/chap4descriptn.pdf
http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/multQueue.htm
http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/multQueue.htm
http://www.answers.com/Q/What_is_the_advantage_and_disadvantage_of_multilevel_queue_scheduling
http://www.answers.com/Q/What_is_the_advantage_and_disadvantage_of_multilevel_queue_scheduling
https://en.wikipedia.org/wiki/Multilevel_feedback_queue
https://en.wikipedia.org/wiki/Multilevel_feedback_queue
https://prezi.com/kzs2ycuj-c65/multilevel-queue-scheduling/
https://prezi.com/kzs2ycuj-c65/multilevel-queue-scheduling/
http://www.sciencehq.com/computing-technology/1353.html
http://www.sciencehq.com/computing-technology/1353.html
https://prezi.com/kzs2ycuj-c65/multilevel-queue-scheduling/
https://prezi.com/kzs2ycuj-c65/multilevel-queue-scheduling/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 778
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 779
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

IJSER

http://www.ijser.org/

